翻訳と辞書 |
Bergman–Weil formula : ウィキペディア英語版 | Bergman–Weil formula In mathematics, the Bergman–Weil formula is an integral representation for holomorphic functions of several variables generalizing the Cauchy integral formula. It was introduced by and . ==Weil domains==
A Weil domain is an analytic polyhedron with a domain ''U'' in C''n'' defined by inequalities ''f''''j''(''z'') < 1 for functions ''f''''j'' that are holomorphic on some neighborhood of the closure of ''U'', such that the faces of the Weil domain (where one of the functions is 1 and the others are less than 1) all have dimension 2''n'' − 1, and the intersections of ''k'' faces have codimension at least ''k''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Bergman–Weil formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|